Dekesel Bibliography Generator

1. Boa E. Wild edible fungi, a global overview of their use and importance to people. Rome: Non-wood forest products 17: FAO; 2004.

2. Diansambu MI, Dibaluka MS, Lumande KJ, Degreef J. Culture de trois espèces fongiques sauvages comestibles du groupement de Kisantu (R D Congo) sur des substrats ligno-cellulosiques compostés. Afrique SCIENCE. 2015;11(3):241–261.

3. Eyi-Ndong HC, Degreef J, De Kesel A. Champignons comestibles des forêts denses d’Afrique centrale. Taxonomie et identification. ABC Taxa 10. 2011.

4. FAO. Champignons comestibles sauvages. Vue d’ensemble sur leurs utilisations et leur importance pour les populations. FAO press; 2006.

5. Cheleba BL, Chacha M, Matemu A. Wild mushrooms from Tanzania: characterization and importance to the rural communities. CREAM. 2015;5(4):307–321.

6. Eyi-Ndong HC, Mounguengui SS, Attéké C, Obone Ndong G. Variation of the consumption of mushrooms by Pygmies and Bantus in the north of Gabon. Advances in Microbiology. 2014;4:1212–1221. doi: 10.4236/aim.2014.416131.[Cross Ref]

7. Yorou SN, Koné NA, Guissou M-L, Guelly AK, Maba DL, Ekué MRM, De Kesel A. Biodiversity and sustainable use of wild edible fungi in the Sudanian centre of endemism: a plea for valorization. (In Ectomycorrhizal symbioses in tropical and neotropical forests, CRC press 2014; 13:241–286.

8. Adejumo TO, Awosanya OB. Proximate and mineral composition of four edible mushroom species from south western Nigeria. Afr J Biotechnol. 2005;4:1084–1088.

9. Degreef J, Malaisse F, Rammeloo J, Baudart E. Edible mushrooms of the Zambezian woodland area. Nutritional and ecological approach. Biotechnol Agron Soc Environ. 1997;1(3):221–231.

10. Tibuhwa D. Wild mushroom—an underutilized healthy food resource and income generator: experience from Tanzania rural areas. J Ethnobiol Ethnomed. 2013;9:49. http://www.ethnobiomed.com/content/9/1/49. [PMC free article][PubMed]

11. Garibay-Orijel R, Caballero J, Estrada-Torres A, Cifuentes J. Understanding cultural significance, the edible mushrooms case. J Ethnobiol Ethnomed. 2007;3:4. doi: 10.1186/1746-4269-3-4.[PMC free article][PubMed][Cross Ref]

12. Härkönen M, Niemelä T, Kotiranta H, Pierce G. Zambian mushrooms and mycology. Norrlinia 29. 2015.

13. Tibuhwa D. Folk taxonomy and use of mushrooms in communities around Ngorongoro and Serengeti National Park, Tanzania. J Ethnobiol Ethnomed. 2012;8:36. doi: 10.1186/1746-4269-8-36.[PMC free article][PubMed][Cross Ref]

14. Hoffman B, Gallaher T. Importance indices in ethnobotany. Ethnobotany Research & Applications. 2007;5:201–218. doi: 10.17348/era.5.0.201-218.[Cross Ref]

15. Albuquerque UP, Lucena RFP, Monteiro JM, Florentino ATN, Almeida C. Evaluating two quantitative ethnobotanical techniques. Ethnobotany Research & Applications. 2006;4:051–060. doi: 10.17348/era.4.0.51-60.[Cross Ref]

16. Buyck B, UBWOBA . Les champignons comestibles de l’ouest du Burundi. AGCD 34. 1994.

17. De Kesel A, Codjia JTC, Yorou SN. Guide des champignons comestibles du Bénin. Coco-Multimedia. 2002.

18. Degreef J, Demuynck L, Mukandera A, Nyirandayambaje G, Nzigidahera B, De Kesel A. Wild edible mushrooms, a valuable resource for food security and rural development in Burundi and Rwanda. Biotechnol Agron Soc Environ. 2016;20(4):441–452.

19. Yorou SN, De Kesel A. Connaissances ethnomycologiques des peuples Nagot du centre du Bénin (Afrique de l'Ouest). In: E. Robbrecht, J. Degreef & I. Friis (eds). Plant systematics and phytogeography for the understanding of African biodiversity. Proceedings of the XVIth AETFAT Congress 2000 (Meise, National Botanic Garden of Belgium). Syst. Geogr. Pl. 2002;71:627-637.

20. DSRP . Monographie de la province orientale. Ministère du plan-R D Congo. 2005.

21. PNUD . Province orientale, profil résumé: Pauvreté et conditions de vie des ménages. Kinshasa: PNUD; 2009.

22. Gilson P, Wambeke AV, Gutzwiller R. Carte des sols et de la végétation du Congo Belge et du Ruanda-Urundi. Yangambi A et B, planchette 2. Belgium: INEAC-Série scientifique 6; 1956.

23. Lejoly J, Ndjele M-B, Geerinck D. Catalogue-flore des plantes vasculaires des districts de Kisangani et de la Tshopo (R D Congo) Taxon. 2010;30:1–308.

24. Vleminckx J, Drouet T, Amani J, Lisingo J, Lejoly J, Hardy OJ. Impact of fine scale edaphic heterogeneity on tree species assembly in a central African rainforest. J Veg Sci. 2014. 10.1111/jvs.12209.

25. White F. The vegetation of Africa. Natural resources research 10. 1983.

26. Mohymont B, Demarée GR. Courbes intensité–durée–fréquence des précipitations à Yangambi, Congo, au moyen de différents modèles de type Montana. Hydrol Sci J. 2006;51:2. doi: 10.1623/hysj.51.2.239.[Cross Ref]

27. Buyck B. Flore illustrée des champignons d’Afrique centrale, RUSSULA I (Russulaceae) Bull. Jard. Bot. Nat. Belg. 1993;15:337–407.

28. Buyck B. Flore illustrée des champignons d’Afrique centrale, RUSSULA II (Russulaceae) Bull. Jard. Bot. Nat. Belg. 1994;16:411–542.

29. Buyck B. Flore illustrée des champignons d’Afrique centrale, RUSSULA III (Russulaceae) Bull Jard Bot Nat Belg. 1997;17:545–598.

30. Heim R. Flore iconographique des champignons du Congo, Lactarius. Bull Jard Bot Nat Belg. 1955;4:83–97.

31. Heinemann P. & Rammeloo J., 1983. Flore illustrée des champignons d’Afrique centrale, Gyrodontaceae (Boletineae). Bull. Jard. Bot. Nat. Belg. 1983;10:173–198.

32. Heinemann P. & Rammeloo J., 1987. Flore illustrée des champignons d’Afrique centrale, PHYLLOPORUS (Boletineae). Bull. Jard. Bot. Nat. Belg. 1987;13:277-309.

33. Heinemann P. & Rammeloo J., 1989. Flore illustrée des champignons d’Afrique centrale, TUBOSAETA (Xerocomaceae, Boletineae). Bull. Jard. Bot. Nat. Belg. 1989;14:313–335.

34. Heinemann P., 1954. Flore iconographique des champignons du Congo, BOLETINEAE. Bull. Jard. Bot. Nat. Belg. 1954;3:50-80.

35. Verbeken A, Walleyn R. Fungus flora of tropical Africa 2: monograph of Lactarius in tropical Africa. National botanic garden of Belgium. 2010.

36. http://www.indexfungorum.org/Names/Names.asp. Accessed 12 Nov 2017.

37. Gumucio S, Merica M, Luhmann N, Fauvel G, Zompi S, Ronsse A, Courcaud A, Bouchon M, Trehin C, Schapman S, Cheminat O, Ranchal H, Simon S. Collecte de données: méthodes quantitatives. L’exemple des enquêtes CAP (connaissance, attitudes et pratiques). Médecins du Monde. 2011.

38. Casey PA, Wynia RL. Culturally Significant Plants. USDA-NRCS; 2010.

39. Grenand P. The use and cultural significance of the secondary forest among the Wayapi Indians. ORSTOM; 1992.

40. Kakudidi EK. Cultural and social uses of plants from and around Kibale National Park, western Uganda. African Journal of Ecology, Afr J Ecol. 2004;42(Suppl. 1):114–118. doi: 10.1111/j.1365-2028.2004.00472.x.[Cross Ref]

41. Kvist LP, Andersen MK, Hesselsoe M, Vanclay JK. Estimating use-values and relative importance of Amazonian flood plain trees and forests to local inhabitants. Commonwealth Forestry Review. 1995;74(4):293–300.

42. Pieroni A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in northwestern Tuscany, Italy. J Ethnobiol. 2001;21(1):89–104.

43. Osarenkhoe OO, Aroye JO, Akande DT. Ethnomycological conspectus of west African mushrooms: an awareness document. Advances in Microbiology. 2014;4:39–54. doi: 10.4236/aim.2014.41008.[Cross Ref]

44. Paluku MP, Molimozi FB, Paluku M, Termote C, Ntahobavuka HH, Dhed’a D, Vandamme P. Contribution à la connaissance des plantes alimentaires sauvages du territoire de Yahuma (Province orientale, R. D. Congo) Ann Fac Sci Unikis. 2012;14:29–41.

45. De Kesel A, Malaisse F. Edible wild food: fungi. In: Malaisse F, editor. How to live and survive in Zambezian open forest (miombo ecoregion). Presses Agronomiques de Gembloux. 2010. pp. 41–56.

46. Fernando D, Wijesundera R, Soysa P, De Silva D, Nanayakkara C. Strong radical scavenging macrofungi from the dry zone forest reserves in Sri Lanka. Frontiers in Environmental Microbiology. 2015;1(2):32–38. doi: 10.11648/j.fem.20150102.15.[Cross Ref]

47. Chang YS, Lee SS. Utilization of macrofungi species in Malaysia. Fungal Divers. 2004;15:15–22.

48. Afieroho OE, Lawson L, Olutayo MA, Emenyonu N. Antituberculosis and phytochemical investigation of the dichloromethane extract Pleurotus tuber-regium (Fries) singer sclerotium. IRJP. 2013;4(1):255–225.

49. Baeke V. Pleurotus tuberregium ou l'excrément surnaturel. (Wuli, Mfumte du Cameroun occidental), Essai interdisciplinaire: ethnographie et botanique. Revue du Cercle de Mycologie de Bruxelles. 2005;5:19–42.

50. Oso BA. Mushrooms in Yoruba mythology and medicinal practices. Econ Bot J. 1977;31:367–371. doi: 10.1007/BF02866888.[Cross Ref]

51. Chowdhary A, Randhawa HS, Gaur SN, Agarwal K, Kathuria S, Roy P, Klaassen CH, Meis JF. Schizophyllum commune as an emerging fungal pathogen: a review and report of two cases. Mycoses. 2013;56(1):1–10. doi: 10.1111/j.1439-0507.2012.02190.x.[PubMed][Cross Ref]

52. Tullio V, Mandras N, Banche G, Allizond V, Gaidos E, Roana J, Cuffini A-M, Carlone N. Schizophyllum commune: an unusual agent of bronchopneumonia in an immunocompromised patient. Med Mycol. 2008;46:735–738. doi: 10.1080/13693780802256091.[PubMed][Cross Ref]

Volumetric absorptive microsampling (VAMS) is a novel sampling technique that allows the straightforward collection of an accurate volume of blood (approximately 10 μL) from a drop or pool of blood by dipping an absorbent polymeric tip into it. The resulting blood microsample is dried and analyzed as a whole. The aim of this study was to evaluate the potential of VAMS to overcome the hematocrit bias, an important issue in the analysis of dried blood microsamples. An LC-MS/MS method for analysis of the model compounds caffeine and paraxanthine in VAMS samples was fully validated and fulfilled all pre-established criteria. In conjunction with previously validated procedures for dried blood spots (DBS) and blood, this allowed us to set up a meticulous comparative study in which both compounds were determined in over 80 corresponding VAMS, DBS and liquid whole blood samples. These originated from authentic human patient samples, covering a wide hematocrit range (0.21–0.50). By calculating the differences with reference whole blood concentrations, we found that analyte concentrations in VAMS samples were not affected by a bias that changed over the evaluated hematocrit range, in contrast to DBS results. However, VAMS concentrations tend to overestimate whole blood concentrations, as a consistent positive bias was observed. A different behavior of VAMS samples prepared from incurred and spiked blood, combined with a somewhat reduced recovery of caffeine and paraxanthine from VAMS tips at high hematocrit values, an effect that was not observed for DBS using a very similar extraction procedure, was found to be at the basis of the observed VAMS-whole blood deviations. Based on this study, being the first in which the validity and robustness of VAMS is evaluated by analyzing incurred human samples, it can be concluded that VAMS effectively assists in eliminating the effect of hematocrit.

0 comments

Leave a Reply

Your email address will not be published. Required fields are marked *